Exercise 14:1336.The number of transactions per visit

1.Description

Table: Visits

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| visit_date    | date    |
+---------------+---------+
(user_id, visit_date) is the primary key for this table.
Each row of this table indicates that user_id has visited the bank in visit_date.

Table: Transactions

+------------------+---------+
| Column Name      | Type    |
+------------------+---------+
| user_id          | int     |
| transaction_date | date    |
| amount           | int     |
+------------------+---------+
There is no primary key for this table, it may contain duplicates.
Each row of this table indicates that user_id has done a transaction of amount in transaction_date.
It is guaranteed that the user has visited the bank in the transaction_date.(i.e The Visits table contains (user_id, transaction_date) in one row)

A bank wants to draw a chart of the number of transactions bank visitors did in one visit to the bank and the corresponding number of visitors who have done this number of transaction in one visit.

Write an SQL query to find how many users visited the bank and didn't do any transactions, how many visited the bank and did one transaction and so on.

The result table will contain two columns:

  • transactions_count which is the number of transactions done in one visit.

  • visits_count which is the corresponding number of users who did transactions_count in one visit to the bank.

transactions_count should take all values from 0 to max(transactions_count) done by one or more users.

Order the result table by transactions_count.

The query result format is in the following example:

Visits table:
+---------+------------+
| user_id | visit_date |
+---------+------------+
| 1       | 2020-01-01 |
| 2       | 2020-01-02 |
| 12      | 2020-01-01 |
| 19      | 2020-01-03 |
| 1       | 2020-01-02 |
| 2       | 2020-01-03 |
| 1       | 2020-01-04 |
| 7       | 2020-01-11 |
| 9       | 2020-01-25 |
| 8       | 2020-01-28 |
+---------+------------+

Transactions table:
+---------+------------------+--------+
| user_id | transaction_date | amount |
+---------+------------------+--------+
| 1       | 2020-01-02       | 120    |
| 2       | 2020-01-03       | 22     |
| 7       | 2020-01-11       | 232    |
| 1       | 2020-01-04       | 7      |
| 9       | 2020-01-25       | 33     |
| 9       | 2020-01-25       | 66     |
| 8       | 2020-01-28       | 1      |
| 9       | 2020-01-25       | 99     |
+---------+------------------+--------+

Result table:
+--------------------+--------------+
| transactions_count | visits_count |
+--------------------+--------------+
| 0                  | 4            |
| 1                  | 5            |
| 2                  | 0            |
| 3                  | 1            |
+--------------------+--------------+
* For transactions_count = 0, The visits (1, "2020-01-01"), (2, "2020-01-02"), (12, "2020-01-01") and (19, "2020-01-03") did no transactions so visits_count = 4.
* For transactions_count = 1, The visits (2, "2020-01-03"), (7, "2020-01-11"), (8, "2020-01-28"), (1, "2020-01-02") and (1, "2020-01-04") did one transaction so visits_count = 5.
* For transactions_count = 2, No customers visited the bank and did two transactions so visits_count = 0.
* For transactions_count = 3, The visit (9, "2020-01-25") did three transactions so visits_count = 1.
* For transactions_count >= 4, No customers visited the bank and did more than three transactions so we will stop at transactions_count = 3

The chart drawn for this example is as follows:

2.Create Table and insert into values

create table if not exists leetcode.ex_1336_visits
(user_id	string ,visit_date	date) stored as orc ;

INSERT INTO table leetcode.ex_1336_visits VALUES
('1','2020-01-01'),
('2','2020-01-02'),
('12','2020-01-01'),
('19','2020-01-03'),
('1','2020-01-02'),
('2','2020-01-03'),
('1','2020-01-04'),
('7','2020-01-11'),
('9','2020-01-25'),
('8','2020-01-28')
; 

create table if not exists leetcode.ex_1336_transactions
(user_id	string,	transaction_date 	date,	amount 	int) stored as orc ;

INSERT INTO table leetcode.ex_1336_transactions VALUES
('1','2020-01-02','120'),
('2','2020-01-03','22'),
('7','2020-01-11','232'),
('1','2020-01-04','7'),
('9','2020-01-25','33'),
('9','2020-01-25','66'),
('8','2020-01-28','1'),
('9','2020-01-25','99 ')
;

In SQL, we create an identity column to auto-generate incremental values by IDENTITY Function while this system function does not exist in Hive. We can create a UDF function(user-defined function) .

Last updated